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ON TWO INITIAL BOUNDARY VALUE PROBLEMS
FOR THE GENERALIZED KdV EQUATION

Results on nonlocal well-posedness are established for initial boundary value problems for the generalized
KdV equation in a bounded rectangle and a half-strip under natural assumptions on initial and boundary
data. The considerable part of the study is devoted to special solutions of the linearized KdV equation of
the "boundary potential"type.

In this paper problems of nonlocal well-posedness of initial boundary value problems in
a rectangle Qr = (0,7") x (0,1) and a half-strip II; = (0,7) x R_ (R_ = (-0¢,0),7 > 0)
are studied for the generalized Korteweg — de Vries (KdV) equation

i -GS FE9): (1)
For the problems in these domains we set initial condition
u(0, z) = up(x) (2)
and the following boundary conditions: for the problem in Q1
u(t, 0) = u(2), u(t, 1) = ua(t), Ua(t, 1) = us(t), (3)
and for the problem in IT;,
u(t,0) = u(t),  us(t,0) = us(t). (4)
The function g satisfies the following growth restriction condition:
|g'(u)] < g =const VueR (5)

First results on nonlocal resolvability and well-posedness of such problems were estab-
lished in [1] for the KdV equation itself

Ut + Uggpy T AUz + Uy = f(ts LL‘) (6)

(a = const € R) under zero boundary conditions (3) and (4), a = 0 and f = 0. The present
paper continues the papers [2]-[5], where these problems were studied for the equations (1)
and (6) in the general case.

Now we introduce some notations. For s € R let

HYR) = {f: F{(1 +1£)°f(6)] € Lo(R)}

(f = F[f) and F~[f] are the direct and inverse Fourier transforms respectively). For any
interval I C R we denote by H*(I) a space of restrictions on I of functions from H*(R) with
natural restriction norm. We also use for s € (0,1) and p € [1,+00) the Slobodetskii space

Wi(l) = f € L,( f[ |f|t— |1+3P dtdr < oo}.
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On Two Initial Boundary Value Problems for the Generalized KdV Equation

It is well-known, that H*(I) = W3(I) (see, for example [6]). We denote by Cy(I) a space
of continuous bounded on I functions. If X is a Banach space, let Cy(I; X) (Cp(I; X)) be
spaces of bounded and continuous (respectively weakly continuous) mappings from Ito X.
By the symbol 7(z) we denote a certain "cut-off"function, namely, n € C*(R), n > 0,
> 0, px) = 0forz < 1/4, p(z) = 1 for z > 3/4, 7/(z) > 0 for x € (1/4,3/4),
n(z)+n(l-r)=1.
The essential part of investigations of the papers [2]-|5] was carried out with the use of

a function
i

3 e
Jo(t, =; pp) = :i (1 + 3signx) f f_J;.)us)”(T) dr
0
(t > 0, x # 0), where
40) = - [ €0 ae = F11e0) @
2 ~or
R

is the Airy function. The function Jy was introduced for functions y(t), defined for ¢ > 0,
and is a special solution of the linearized KdV equation

Vg + Vgge = 0 (8)

of the "boundary potential"type. For the first time this function was considered in the paper
7] for z € R, = (0, +00). Certain properties of the potential J; were studied in [3]. With
the use of these properties in the papers [4] and [5] some results on nonlocal well-posedness
of the problems in Q7 and II; for the equation (1) in classes of generalized solutions were
established for ug € Lo, u1 € (Laye N W2 N WL9)(0,T), uy € W0, T), uz € Ly(0,T).

However, these conditions on smoothness of boundary data u; and u, are non-optimal.
Consider the initial value problem for the equation (8) with the initial condition

v(0,7) = uo(z). (9)

If uy € H*(R) for some s € R, then for a solution of this problem v(t,z) € Cy(R"; H*(R*))
for any r € R

||1»'('11‘)||H(s+1)/3(11§r) = |||/\|(3+1)”3§()\s$)||L2(RA) = CO(S)HUUHHs(R)a
||Ua:('s$)||ﬁ;s/3(mt) = Cl(S)HUOHHS(R)

(see, for example, [8]). Therefore, one can assume, that conditions of the type uo € H?,
Uy, us € HETY/3(0,T), ug € H*/3(0,T) are natural for the problems considered.

One of the main ideas of this paper in comparison with [2]-[5] is the substitution of
the function Jy by another solution of the equation (8), which is introduced for functions y
defined on the whole real line. This approach made it possible to establish results on nonlocal
well-posedness of the considered problems under natural (or close to natural) assumptions
on boundary data.

DEFINITION 1. For anyt € R and any x > 0 let

t

J(t,z;p) =3 f 1 A”((t __:2.)1,13)#(7-) dr, (10)
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where the function A is defined by the formula (7).

LEMMA 1. Let pp € L,(R) for some p € [1,+0c]. Then the function J is defined and infinitely
differentiable for t € R, x > 0, satisfies the equation (8) in this domain and for any xo > 0
and non-negative integers m and |

sup |DyDLJI(t, x5 p)| < e(m, 1, o, p) ||l m)- (11)

z>zoteR

Proof. It is well-known, that the Airy function A is infinitely differentiable on R, for
any @ satisfies the equation

A"(0) = %9‘4(9) (12)

and decreases rapidly with all its derivatives while # — +oc. Therefore, for z > x5 > 0

t
DL < [ =i A(I+2}((t_:}”3)#(1r)| dr <
-0

< 3V/ag¥a=3=t]|g3H=4a0A0) V||, g, Ill,@) < el zo, D)k, @)

where 1/p + 1/g = 1. Besides that, it follows from (12), that J; + Jzze = 0. The lemma is
proved.

LEMMA 2. Let u € W\"*(R). Then J, € L(R'; C,(R?})) and

HJ-'-”('? " H)”Ll(Rf;Cb(Ei)) = c”#‘”u-‘f”(m' (13)

Proof. According to (10) for x > 0

t
J,‘r = "‘ (t__f)‘l;SA’H ( (t_f)lIS ) #(7) dT —
—00
t
= _{o =g A” (W) (u(7) = p(t)) dr,

because in virtue of (12)

% , x
(t —1"r)4/3A ((t _i)m) ~or [(t —1’r)1f'3A((t = 7)1/3)] '

Therefore, since |A”(#)| < const for 6§ > 0, we find, that

t
. \u(t) — p(7)|
[supiontataes e [ [ EEZEH drdt < el
i R —oc

The proof is completed.
Now we obtain an alternative representation for the boundary potential .J.
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On Two Initial Boundary Value Problems for the Generalized KdV Equation
LEMMA 3. Let 4 € Ly(R) for some p € [1,2]. Then for any x > 0

J(t,:r;p) — %[eit)\e—%{\/EIA|1;3+§A1/3)IE(/\) d\ = ﬁ—l [er(x;xﬁ(/\)] (f.), (14)
R

where

r() = =5 (VBIAS + A1), (15)

Proof. At first let 4 € C3°(R). We put

G(t,z) = tl%A (f%) - %J—}‘l [,\-2/%“"""‘} (*).

Then
J(t, @5 p) = D2[3(G(-, 2)0(-) * ) (B)], (16)

where 9 is the Heaviside function. For any = > 0 we derive, that

F[3(G2)00) + )] () = & (233« F9]) (VA =
— (%,\'2*”36“)‘”3 + %v.p.g 5«-—_2/;5;?'1/3 d{)ﬁ()\) =

. %)\—2;36—;(\/EI»\I"3+::A1/3)(1 — iv/3sign A)i(X).

Substituting the obtained equality into (16) we derive (14). In the general case one can
establish this equality with the use of closure.

LEMMA 4. Let u € HEU/3(R) for some s > 0. Then J € Cyo(Rt; H*(R,)) and for every
teR

| BACARY :U)”HS(IRJJ it C(S)“ﬂ-||Hfs+1)/3(R)- (17)

Proof. Let, at first, s = n, where n is a non-negative integer number. According to (14)
forz >0

D2y = 5 [ePrmne®madr = o [ e @) e,
R i

We use the following inequality from [9]: if certain continuous function y(A) satisfies an
inequality Ry(A) < —e|A| for some £ > 0 and all A € R, then

< ¢le =
sy S CON e

‘f(»\)mf(/\) d\
It

Then since ®r(£%) = —V/3|¢|/2
DRI || Loy < ll€™2RE @y < erllpll gosnssy-
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Using interpolation in the spaces H® we complete the proof.

LEMMA 5. Let p € H"3*(R) for some s > 0 and integern > 0. Then D*J € Cyo(R%; H(RY))
and for every x > 0

|1 D3I (-, ; #)”HS(R) & C(“)“#‘”H“/HS(R)' (18)
In addition,
DpJ(t,0+0; 1) = FH [r (NN ] (). (19)

Proof. This assertion obviously follows from (14) since Rr(\) < 0.

DEFINITION 2. For any t € R and any x < 0 let

J(t,z;p) =3 f . 1_ A" ( E _"‘;‘"')1 {,3) u(7) dr. (20)

It is obvious, that

—

J(t,zp) = J(—t,—x;1),  where u(t) = u(-t), (21)
and therefore, the properties established in the previous lemmas for the function J are also
valid for the function J with natural substitution of R, by R_.

Now we turn to the problem in Qr. The definition of a generalized solution of the

problem (1)-(3) can be found in [4]. For integer £ > 0 define special functional space for
solutions

Xi(Qr) = {u(t,z) : D"u € C([0,T); H3*-™)(0,1)) N Ly (0, T; H3k—™+1(0, 1))
for 0 < m < k}

and for right parts of the equation

Mi(@r) = {f(t,z) : DI"f € C([0, T]; H**~™=D(0, 1)) N Lo (0, T; H¥*~m=1+1(0, 1))
for0<m<k-1, DFfeL(0,T;Ly0,1))}.
In this article we consider only the cases k =0 and k = 1.

THEOREM 1. Let k =0 or k = 1, the function g € C**Y(R) and satisfies the inequality (5).
Assume, that ug € H¥*(0,1), uy,uy € (HF'3NW?)(0,T), us € H0,T), f € Mp(Qr)
for some T > 0 and if k = 1, then additionally ue(0) = u1(0), uo(1) = us(0), up(1) = u3(0).
Then there ezists a unique solution u(t,x) of the problem (1)-(3) in the space Xi(Qr).
The mapping (uo, w1, u2, us, f) — u is Lipschitz continuous on any ball in the norm of the
mapping H3*(0,1) x ((H*/2 nW,"*)(0,T))* x H*(0,T) x Mi(Qr) = Xx(Qr).

Proof. The proof consists of three steps.
Step 1. The linear problem. Consider in Q7 the problem

W e =) (22)
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On Two Initial Boundary Value Problems for the Generalized KdV Equation

1"|t=0: Uo, U‘m:lﬁl: U1, le:lz U2, U’w‘“‘x:lz Us. (23)
Define an auxiliary function
Utz ur,ug) = J(t,zw)n(l — x) + J(t o — Lu)n(z). (24)

Let
V(t,z) = ult,z) — ¢t 2w, u), F(tz) = f(E,2) — (¥ + Yaaa),
Up(z) = uo(x) — v(0,z), Us(t) = us(t) — Jo(¢,0 — 0;us).
Then the function v is a solution of the problem (22)-(23) if and only if the function V" is a
solution of the problem
Voo V= (1 ), (25)
Vi = ¥ =W =0 % =k

Note, that if the conditions of the considered theorem are satisfied for £ = 0, then in virtue
of Lemmas 1-5 F € Ll(O,T;LQ(O,l)), U'D € LQ(O, 1)? L’rg € LQ(U‘, T)? T,-{‘ € JYQ(QT) with
corresponding estimates by norms of ug, uy, us, uz and f.

After that, using the same arguments as in [4, Lemma 2| one can prove, that there

exists a unique solution v(t, ) of the problem (22)-(23) in the spaces Xix(Qr) and for any
ty € (O,T]

||U||A'k-(Q=0) = C(T)(||u0”H3"‘(0,l) + ||U1||Hk+1/3(o,T) + ”UQ“HHU?»(O,T}'*' (26)
+||usl| g0,y + ||f“ﬂ-f;-(Q:0))-

Morover, for every t € [0,T] and p(z)=1lor p(z)=1+z
1 1 t1
[ V23(t, z)p( da:+3ff1 dxdr§4fuﬁdm+2fff‘.'pd.rd?’+
0 00

t1
+C{T} ff‘ pdﬁ?d’," o C( ) (Hul”}p/s (0.7) =+ ”u2||Hl/3(0T G ||U3||2 (27)

L2(0,T)

(for solutions from X;(Qr) this inequality can be obviously obtained via multiplying (25)
by V(t,z)p(z) and integrating and then for solutions from X,(Qr) via conclusion) and if
k = 1, then the function v, is a solution in Qr of a problem of the (1)-(3) type, where wuy,
uy, Ug, uz, f are substituted by f|i—o — uf, u}, uh, us, fi.

Step2. Local well-posedness. For any to € (0,7 define classes of functions Zy(Q¢,) =
‘YO(Qta)a
Z1(Qu) = {u € X1(Qu) : ],_y= uo}

and define on these classes a map A in such a way: v = Au for u € Zx(Qy,), if v € Zi(Qy,)
and solves in ()¢, a linear initial boundary value problem for the equation

Ut + Ugge = f - g(u)u:x (28)

with initial and boundary conditions (23).
If Kk =0, then

tp
g (w) | 0t05L200,1)) < € f (L + lullcoy) lluellLoo dt <
0

to
3/2 1/2
<q {(llux||Li(o,1)”u”[i(o,l) + Hu“2 (29)
1/4
Lo(0,1) I ||u$”L2(U.1)) d (T)t / (1 -+ |l("’5||ho(({b}rf )
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If k=1, then
1(g(w)uz)illLy0t0iL2001)) <

< clluellzaotoscromplltalleotliLaon + elltell, otizs01) (1 + llulleg,,)) <

(30)
= Cltéﬂ”utHLg(O,to;Hl{O,l))(1 + [luoll 0.1y + el o0 (0,1)) <
< C(T)(l + to|u ?\‘I{QEO)):
1(g(w)tir)e|Lo(@ey) <
< elltellcrompllealloqnyLaomn) + clltezllL @) (1 + lulleg,,)) <
(31)

< 6‘1ff;f?”u||(:([u,ro];H3(0,1))(1 + [Juoll g10,1) + ”Ut”Ll(O.to:Hl(O‘l})) =

< o(T)(1 + tollull, g,,))-

Therefore the desired solution v(t, x) of the problem (28),(23) exists and according to (26)
and (29)-(31)

~ 1/4
”v”X:«(Qto] < (7(1 + tﬂf ”u”g\’k('@to)) :

Choosing B > 2¢ and ty < (2¢B)~* we find. that A transforms a ball Z; 5(Q,,) = {u €
Z1(Quo) : |lul|x,(@i,) < B} into itself. |

Next, we consider two functions u and 4 from Zj p(Qy,). Let v = Au, v = A, w = v -7,
w = u — 1. Then w solves in @, a problem for the equation

Wi + Wegy = — (g(u)u:r - g(ﬁ)ﬁm)

with zero initial and boundary conditions. By analogy with (29)—(31) one can derive, that

A 1/4) ~
lg(wue — g(@)t a0 < c(B)ty 19| x4 (Quy )

whence with the use of (26) obtain, that

1/4) ~
1wl xi(@ep) < C(B)tof 01| x4 (@uy)-

Thus, for sufficient small #, the map A is a contraction on Z; g(Qy,) and, therefore, in Q,
there exists a unique solution u € X (Qy,) of the problem (1)-(3).
The continuous dependence result can be proved by a similar argument.

Step 3. Nonlocal apriori estimates. Let u € Xo(Q;,) be a solution of the problem (1)—(3)
in @y, for some 5 € (0,T]. We establish the following estimate:

||u||XO(Qt0) = C‘(T? ||U-|:|||L2(0,1), ||u]||[Hlf3|"‘|].1-’llx3)(0"_]"‘)? ”uQ”(H1/3ﬂﬂ’11/3)(0,T}’ (
32)

lusll o 0.7)5 ”f”Ll(O.T;Lg(O,l)})-
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To this end first of all choosing in (27) p = 1 we derive for
Ut,z) = u(t,z) — ¥(t, ;u1, us)

(v is defined by the formula (24)) the following inequality

1 t 1 t 1
fUQ(t,x) dx < Py +c/f 2 dxdr"'Qf (f — g(w)ug)U dadr, (33)
0 00 00

where here and further in the proof we denote by P, arbitrary constants depending on the
same values as the constant in the right part of (32). Note, that

U

U
g(u)uU = /gﬁ—l—d 9.:39 +;,fg.9+¢ (34)
0 0
and, therefore,
11

|ft1 g(u]ux[,s'dmdr| | f Uy fg 0+ ii)dexd'r| <
00

00

t 1
<cf ||?#'?’x||0[0‘1]d?'[1 + sup [(U? +’e,f.-'2)dx].
0 TE[0,4] 0

Thus, using the inequalities (13), (17) and the formula (21), we derive from (33) the estimate
lulleqo.toliLa(0,1)) < FPo- (35)

Then, again using the inequality (27) (for V" = U) and choosing p = 1 + x we derive (taking
into account (35)), that

to 1

/fUQd:rdt<P0—2/f (1+z)g(u)u U dzdt.

Again using (34) we find, that

tol

S+ z)g(u)uU dxdt‘ =
00

_CEU

and derive (also with the use of the estimate (18)), that

1 . tol 1/4
Ullep. + lallcon + 1) [1+ [(U2 + y2)da|dt < (ff U2 dadt) " + P,
0 00

|12l £5(Qeq) < Po- (36)

The estimates (35) and (36) provide the inequality (32).
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Now for some t; € (0,T] consider the solution u(t,z) of the problem (1)-(3) in X;(Qy,)
and prove that

||u||X1 (Qtp) < C(T1 "uﬂ”L‘z(U,l)? Hul||(Hl,a’3m,1'11/3)(0=r)1 ||UQH(HU"BnH'an}({J‘T}’
luall Laco,rys 1| 2u0.75L2001))) X (37)
X (||U0||H3(0,1) + ||u1”H4f3(O,T) =+ ||U2||H4/3(0,T} + |usll g0y + ||f||Ml(Qr))'
To this end we first of all consider the function v = wu;, which solves in @)y, the linear problem

Vi + Vggz = ft = (g(u)ux)h

ULZG: f‘tzu_g(uo) ug’ vl:l::iJ: u;’ IU‘T_..I: u’Qa 'le

i
o= U3

Let ¥y = v¥(t, z;u), uh). We put Ui(t,z) = w(t,2) — ¥1(t, z). Then using for this problem
the inequality (27) with p(z) = 1 + x we find, that

t1
f(l—Hc U(t,x)dx + 3 [[ U}, dedr <
0 e (38)
< P24 ff(1+2)UEdrdr +2 [[(1+ z)(f; — (9(v)ue),) Uy dadr,
0o 0o

where here and further in the proof we denote by P, arbitrary constants of the same structure
as the right part of (37). For any 6 > 0

jj(l +2)(¢' (W) urug + g(u)ue, ) Uy dadr

i
< ¢ [ [allaon U1+
0

+1llzo0n) + (14 |2l 2o 1 U2 + ﬁ'i’lxlng(o.l)] Ui lleo,y dr <

Bl

1
of L dzdT + ¢(6) f el 00 {(1 + 2)U? dwdr+

4/3
+¢(6) (1+ luallytgu,) ) 1112 o ato.n*

|
+¢(8) (1+ lulld o s acony) [+ 2)UF dedr + c(@)llv1sl?

L2(Qr)"

Using the inequality (32) and the corresponding estimates for the function ¢, we derive from
(38) and (39), that

“utHXo(Qto) =& (40)
Next, with the use of (40) and the inequality
lg(u)uellcgo to:a-101) C”ﬂ |ul) “”) g 1) =
% 3,y) < cllullxo(@eo) (islion + luelxo@ig))
< a1+ [|lullogotonzacan] o
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we find, expressing u,,, from the equation (1) itself, that

|tazllcoolLa01)) < ¢[l[tezelloqoto)m—10.1) + ullcqotosza0iy] < Pi- (41)

Again using the equation (1) and taking into account (41) we derive the estimate

“Uxo:';':“C([O,ta];Lg(O,]}) <P, (‘12)

since
lg(u)ualleqoorzaoay < e[1+ lulleqoiozaoan] luclle, )-

Finally, differentiating the equation (1) with respect to x and expressing u,,, we find, that

||u:c:r:c.‘r“Lg(Qp_0) S P], (43)
since

llg'(u)us + Q(U)um“m@:e) < C“um”LQ(an)”u:n"C(QU}+

+e[1 + [[ull Lyo.toicto,] 1taelleqotolao,n)) < e(llullxo@e)) Iullcqotolaso.ny < P

The estimate (37) follows from (40), (42) and (43). The theorem is proved.

REMARK 1. It is obvious, that HY/3¢(0,T) c (H'3nW,"*)(0,T) for anyc > 0, H*3(0,T) =
(HY3 n W3 0,T).

REMARK 2. With the use of the properties of the boundary potential J, obtained in Lemmas
1-5, nonlocal well-posedness of the problem (1)-(3) can be established in the spaces Xy (Qr)

for natural k > 2, if ug € H3*(0,1), uy,uy € H*/3(0,T), uz € H¥(0,T), f € My(Qr), the
function g is sufficiently smooth and certain compatibility conditions are satisfied.

Now we consider the problem in II7.. The definition of a generalized solution of the
problem (1),(2),(4) can be found in [5]. Let

T -m 1/2
A (T = sup(f [ u¥(t,z) dxdt) :
m=0 *0—m—1
~+o0 1/2
AFEET) = ( = sup ’u,?(t,:c))

m=0 (t,x)€[0,T] x[-m—1,—m]
and define special functional spaces
Xv(II7) = {u(t, z) : u € Cou([0, T}; L2(R-)), Ag (ua; T) < o0},
Y (I7) = {ult, ) : w € C(0,T); HA(R_)), Ag (ugas; T) + A (w: T) < o0}.

First of all we study solutions from the class X*(II7).

THEOREM 2. Let the function g € C*(R) and satisfies the inequality (5). Assume, that
up € Lo(R_), us € (Hlﬁﬂi‘f’fﬁ)(ﬂ, T), uz € Ly(0,T), f € L1(0,T; Ly(R_)) for someT > 0.
Then there ezists a unique solution u(t,x) of the problem (1),(2),(4) in the space X™(I17).
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If a function u(t,x) € X¥(I1) is a solution of the problem of the (1),(2),(4) type, where ug,
ug, us, f are substituted by uy, Uy, us, f from the same spaces, then for every 5 > 0

[0 = D o ryzagn.y + VB = Dz < el t0 = To)e e+

(44)

L(0,T) % H(f - f)eﬁxHLl(l],T;Lg(]R_))]’

where the constant ¢ depends on 3, T, properties of the function g and norms of the functions
u and u in the space Lo (0,T; Lo(R-)).

Proof. The exact analogue of this result has been previously established in [5] under
the condition us € F’i-"f'“fﬁﬂ (0,T) for some £ > 0. The proof of the present theorem is carried
out quite similar to [5] with the use of the function J instead of Jo. That is why we point
out here only the main ideas of the proof.

Generalized solutions of the considered problem are constructed as limits while § — +0
of solutions of regularized equations

+||u2 - aQ“HUS(O,T} e H“‘3 ~ g

Up + Ugzr — 30Uz + g(u)u, = f(t,2), >0 (45)

(9, f, uo, us, ug are also regularized). We prove for (regular) solutions of the problem
(45),(2),(4) in IT; an apriori estimate independent on d, which is crucial for the passage
to the limit:

1l xwng) < (T l[woll aoys u2ll gr/sop /ooy 1sllays [ Fllaoriza@y)- (46)
To this end we define an auxiliary function
W(t, z;u9) = j(t, z; ug)e‘s’“

and for the function U(t, z) = u(t, ) — ¥(t, x; us) consider the problem

Ui + Ugge — 30U + g(U + ¥)(U + ¢), = F(t, ),
(47)
LT

t=0= U0, U\x:oz 0, Usl,_="Us,

where F' = f - (’d"t + w:m::c . 351!”3::\:‘)1 U()(ZI?) = UQ(S'J) - t-’r)([}}x)a U3(t) = U3(t) - 1:L':!:(t:' _0) It is
easy to see, that N N
T.Dt e 'djxxa: EE 351!’.1*:!: = _3§2J366$ = 253J66x
and, therefore,
1¥e + Yooz — 30%zelLy0.1iL2_)) < (T)||u2ll 1730,y

Let p(z) € C3*(R) be a certain positive, nondecreasing function such, that |p")(z)| < cp(z)
for x < 0 and j = 1,2,3. Then multiplying (47) by 2U (¢, z)p(z) and integrating we find,
that . ,

[ U(t,z)pde+3 [ [ Updxdr +65 [ [ UZpdzdr < [ Uipda+

R- 0R_ 0 K- R
t t t (48)
+2 [ [ (F — g(w)us)Updadr + ¢ [ [ UPpdzdr + p(0) [ U} dr.

0 R_ 0K 0
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The equality (34) yields, that

U U
fg(u)uxb'pda: = —ffg(9+?;"!)Qdﬂp'd$+f1;’)x'/g(ﬂ-&-'l,f*)dﬁpdx. (49)
E. 0 R- 0

K.
At first, choosing in (48) and (49) p = 1 we find similarly to (35), that

||'U||C([0,T];Lg(]1e,-_)) &P (50)

where here and further in the proof we denote by P arbitrary constants, depending on the
same values, as the constant in the right part of (46). Next, choosing

p(z) = pm(z) = 14+ n((x + m+2)/3)
for every integer m > 0 we find similarly to (36), that
A5 (ugi T) < P. (51)

The estimate (46) follows from (50) and (51). The rest part of the proof of existence of
generalized solutions is just the same as in [5, Theorem 1].

For the proof of the inequality (44) one has to write down the analogue of the inequality
(48) for the function V(¢,z) = u(t,z) — u(t,z) — J(t,x;us — Us) (here, of course, § = 0)
and p(z) = exp (26x) and estimate in a proper way the nonlinear term (for more details
see |5, Theorem 2| or in the case of the KAV equation itself [3, Theorem 4.3]). The proof is
completed.

More smooth nonlocal solutions of the problem in II; are constructed only in the case
of the KdV equation itself.

THEOREM 3. Let ug € H*(R_), up € H'(0,T), u3 € H*3(0,T), f € L2(0,T; HX(R_))
for some T > 0 and uo(0) = u2(0), uy(0) = u3(0). Then there erists a unique solution
u(t,z) of the problem (6),(2),(4) in the space Y (II}). The mapping (ug, uz, us, f) +— u is
Lipschitz continuous on any ball in the norm of the mapping H*(R_)x H'(0, T)x H*3(0,T) x
Ly(0,T; HA(R.)) — Y (II7).

Proof. The exact analogue of this result has been previously established in [3] under
the condition uz € W:'t]f3(0’ T). As for the previous theorem we point out here only the main
ideas of the proof.

At first consider in I17. the linear problem

Ut + U:c:c:r e AUy = f(ta "T)s (52)

U|t:0= Uo, v‘.’r:(): Uz, Uf|x=u= us (53)

and prove for a solution v(t,z) € Y'(II}) the following three inequalities: for any ¢, € (0, T

ollymz) < c(a, T)(|luollz2w_y + lluzlla o) + lusll gz o)+
(54)
+ Fllsotosrr @y + 11 ¢ O)lzatote) + 12 (5 0) Iy s00)) 5
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if
w(ta .’L‘) = w(tT €3 u3) = ??(:"’ £5 1) f j(t, Y u3) dya I"(t? 1') = ’U(t}.’{?) - Tfi'(t’ ‘T)!

then for ¢ € (0, 7] and a function p(x), which satisfies the same conditions as in the inequality
(48) and, in addition, p(x) > 1 for z < 0, p/(z) > 0 for z € [-1,0],

[ V2 (t z)p(z) d:r+‘)ff‘lmx,0 dzdr <2 [ (uf) pd:r-t—cffl  pdxdr+
E_ R-

0 R_
t
+2 oer fa:a:l"'jmp drdr + CHUQH?ﬁ(G,ﬂ + C”“ﬁ”i]zﬁ(o T) * C‘({ fQ(T? U) dr+ (55)

+c‘f|f (7 D)|4f3(1kf Impd:r e dr,

where the constant ¢ depends on a, T and the properties of the function p;

%f V2(t, z)Veult, z)p(x) x——of [ VaV2 pdadr < f f V2 _p dedr+
0R_
(56)
+ff(supm Fi(r.a) ff?w)dm)dmffx —

0R_

where in this inequality the constant ¢ depends also on |Juol|g2®_), [|u2llmr 0,75 l|Uall g2rs0m)

and [|vlleqoryLa@-)):-
Note, that the function V'(¢, z) is a solution of the problem

":*, A Ijra:a‘ Hi (L‘; = f (wt . T#x:r:r + ay .'r)

Vlt:lilz uu_{l‘bltzﬂ’ 1|:r: 0= U2 Ix‘x s

(57)

Multiplying (57) by 2Vzs2(t, ) p(z) and integrating, using the evident interpolation inequality
(following from the properties of the function p)

1/2
|Vaz| .| <c[ fixmp da’: [lmpd:r flmpd:r ], (58)

we derive the inequality (55). Choosing in (55)
p(z) = pm(z) = 1+ n((z +2)/3) + n((z + m +2)/3)

we find, that i|um||c([u,¢0;;£,2(ng_))) and Aj (ugzze;to) are estimated by the left part of (54).
Estimating A; (u; to just as in |3, Corollary 3.3|, we finish the proof of (54). Finally, multipli-
cation of (57) by 2(V2(t,z) + 2V (¢, 2)V,.(t, 2)) p(2) and integration provides the inequality
(56) (again with the use of (58), for more details see [3, Lemma 3.3]).

Next, local well-posedness for the KdV equation is established via the contraction
principle on the basis of the estimate (54) (for more details see |3, Theorem 4.1}, similar
arguments are carried out in Theorem 1 of the present paper).

In order to establish global well-posedness we prove for a solution u(t,z) € Y (II;) the
following a priori estimate:

lully @z < ela, T luoll 2oy, lluzll oy Nusllgers o,y |l Lao sz @oy)- (59)
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To this end we write down the inequalities (55) and (56) in the case of the equation (6) (here
f must be substituted by f — uu,) for p(x) = p,(x). Then summation of these inequalities
provides the estimate

ullegorimz@oy) + Ag (Yaze; T) < P, (60)

where here and further in the proof we denote by P arbitrary constants, depending on the
same values as the constant in the right part of (59). Next, since for ¢, € (0, 7]

1/2 s i
Huu-’F“LJ(U,iOiHZ(R—)) 5 Ctui (||u'1|?7([o,;0];1{2(1ﬂ;_)) + A3 (U5 t0) Ag (Uazas to))}

ety Oy a(os0) < €tol> (Mg (Uazei to) + llulloqos)mz@-y)s

we obtain from (54) and (60), that

1/2
||’U-||Y(n%) =F [1 +ty/ H“-Hr(r[%)] ’

and, therefore, establish (59). The theorem is proved.

REMARK 3. In more smooth classes nonlocal well-posedness of the problem (6),(2),(4) in
II; can be established for natural k > 2, if ug € H*(R_), uy € H*'/3(0,T), uz € H*(0,T)
or ug € H¥*+2(R_), uy € H¥Y(0,T), us € H*2/3(0,T), the function f is suficiently smooth
and certain compatibility conditions are satisfied (see [3, Theorems 5.1 and 5.2]).
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